
ESTIMATING SIZES OF A CONVEX BODY

BY SUCCESSIVE DIAMETERS AND WIDTHS

U. Betke and M. Henk†

Abstract. The second theorem of Minkowski establishes a relation between the
successive minima and the volume of a 0-symmetric convex body. Here we show

corresponding inequalities for arbitrary convex bodies, where the successive minima
are replaced by certain successive diameters and successive widths.

We further give some applications of these results to successive radii, intrinsic

volumes and the lattice point enumerator of a convex body.

1. Introduction

Throughout this paper Ed denotes the d-dimensional euclidean space and the set
of all convex bodies — compact convex sets — in Ed is denoted by Kd. Further Kd

0

denotes the 0-symmetric convex bodies, i.e. K ∈ Kd with K = −K. As usual V (K)
denotes the volume of a convex body and the set of all i-dimensional linear subspaces
of Ed is denoted by Ld

i . For L ∈ Ld
i , L⊥ denotes the orthogonal complement and

for K ∈ Kd, L ∈ Ld
i the orthogonal projection of K onto L is denoted by K|L.

The diameter and width of a convex body K ∈ Kd are denoted by D(K) and
∆(K). For a detailed description of these functionals we refer to the book [BoF]. For
any function Φ depending on the dimension we write Φ(M,A) for an affine plane A
and M ⊂ A to denote that Φ has to be computed with respect to the euclidean space
A. With this notation we can define the following series of successive diameters and
successive widths

Definition 1.1. For K ∈ Kd and 1 ≤ i ≤ d let

i) Dπ
i (K) := min

L∈Ld

i

D(K|L),

iii)∆i
π(K) := max

L∈Ld

i

∆(K|L;L),

ii)Dσ
i (K) := min

L∈Ld

i

max
x∈L⊥

D(K ∩ (x + L)),

iv)∆i
σ(K) := max

L∈Ld

i

max
x∈L⊥

∆(K ∩ (x + L);x + L).

We obviously have Dπ
d (K) = Dσ

d (K) = ∆1
π(K) = ∆1

σ(K) = D(K), Dπ
1 (K) =

Dσ
1 (K) = ∆d

π(K) = ∆d
σ(K) = ∆(K) and these successive diameters and widths are
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continuous, monotone, homogeneous of degree 1 and invariant with respect to rigid
motions of Ed.

Closely related to diameter and width of a convex body K ∈ Kd are circumradius
R(K) and inradius r(K) ([BoF]). Clearly, 2r(K) ≤ ∆(K), 2R(K) ≥ D(K) and on
the other side by the theorems of Jung [J] and Steinhagen [St]

R(K) ≤ jd · D(K), with jd :=

√

d

2d + 2
, (1.1)

r(K) ≥ sd · ∆(K), with sd :=

{

1/(2
√

d), for odd d√
d + 2/(2d + 2), for even d.

(1.2)

Now, we can define successive circumradii and inradii in the same way we have
defined successive diameters or widths and get the following four series of successive
radii

Definition 1.2. For K ∈ Kd and 1 ≤ i ≤ d let

i) Rπ
i (K) := min

L∈Ld

i

R(K|L),

iii) ri
π(K) := max

L∈Ld

i

r(K|L;L),

ii) Rσ
i (K) := min

L∈Ld

i

max
x∈L⊥

R(K ∩ (x + L)),

iv) ri
σ(K) := max

L∈Ld

i

max
x∈L⊥

r(K ∩ (x + L);x + L).

We obviously have Rπ
d (K) = Rσ

d (K) = R(K), Rπ
1 (K) = Rσ

1 (K) = ∆(K)/2,
rd
π(K) = rd

σ(K) = r(K) and r1
π(K) = r1

σ(K) = D(K)/2. If we replace in Defi-
nition 1.2 the first max-condition by a min-condition and vice versa we get four
other series of successive radii, which now start with half of the diameter (half of
the width) and terminate with the circumradius (inradius)

Definition 1.3. For K ∈ Kd and 1 ≤ i ≤ d let

i) Ri
π(K) := max

L∈Ld

i

R(K|L),

iii) rπ
i (K) := min

L∈Ld

i

r(K|L;L),

ii) Ri
σ(K) := max

L∈Ld

i

max
x∈L⊥

R(K ∩ (x + L)),

iv) rσ
i (K) := min

L∈Ld

i

max
x∈L⊥

r(K ∩ (x + L);x + L).

It is easy to see that all these successive radii have the same properties as the
successive diameters or widths.

Surprisingly, up to now there seems to be little literature on these series of
successive diameters, widths and radii. Perhaps the first result is due to Zindler

[Z] who showed that there is a 3-dimensional convex body K for which Rσ
2 (K) <

Rπ
2 (K). Perelmann [P] studied the quotient Rπ

i (K)/rd−i+1
σ (K). Further they

play a certain rôle in computational geometry (cf. e.g. [GK]). The only reference of
successive diameters and successive widths known to us is by Davis [D], who posed
the problem to determine the range of Dπ

i (K)/∆d−i+1
π (K).

On the other hand apparently there is a rich theory for these functionals. For
a first systematic study see Henk [He1], who showed e.g. that Jung’s inequality
(1.1) can be generalized to the Ri

π(K) and Ri
σ(K) [He2]. In the same way there is

a generalization of Steinhagen’s inequality (1.2) to the rπ
i (K), rσ

i (K), though the
best constants are not known in all cases (compare [BHe1]). Further the successive
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diameters and widths are closely related to the well known successive minima from
the geometry of numbers as it will be shown in [BHe2].

Here we mainly study inequalities between the volume and the successive diam-
eters or widths (Theorem 2.1.). These are completely analogous to the classical
second theorem of Minkowski ([Mi], pp. 192, pp. 211, [GrL], pp. 59). The first re-
sult of this kind is by Kubota [Ku] who essentially proved the left side of Theorem
2.1. in dimension 2.

Next we transfer these results to the successive radii of Definition 1.2. and give
the corresponding theorem for the radii of Definition 1.3. The existence of such
inequalities was pointed out by J. M. Wills (private communication). In fact this
was the starting point of our investigation.

The third section generalizes the results for the well known intrinsic volumes
though optimality is lost in some cases. In the final section we briefly study a
different subject: A most challenging problem in the theory of numbers, geome-
try of numbers and convexity is — from different point of views — the study of
G(K)/V (K) for ”large” bodies, where G(·) denotes the lattice point enumerator
(see e.g. [GrL], [BW]).

From the convex point of view there is a satisfactory lower bound by the result of
Bokowski-Hadwiger-Wills [BokHW], while there are only weak upper bounds.
Application of the result in [BokHW] immediately gives an asymptotically sharp
inequality of the form G(K) > (1− d

2
1

r(K) )V (K), K ∈ Kd. The results of the third

section together with known results give (apparently very weak) inequalities of the

form G(K) ≤ ∏d
i=1(1 + cid

Dπ

i
(K) )V (K). Nevertheless this gives a new approach to

the problem and more direct studies might yield better results.

2. Volume, successive diameters, widths and radii

First we summarize some simple relations between the successive diameters,
widths and successive radii, which will be used in the following.

Lemma 2.1. Let K ∈ Kd and Lj ∈ Ld
j . Then for 1 ≤ i ≤ j ≤ d

i) Dπ
i (K) ≤ Dπ

i (K|Lj ;Lj) ≤ Dπ
i+d−j(K),

ii) ∆i+d−j
π (K) ≤ ∆i

π(K|Lj ;Lj) ≤ ∆i
π(K)

iii) 2rd−i+1
π (K) ≤ ∆d−i+1

π (K) ≤ Dπ
i (K) ≤ 2Rπ

i (K).

Up to the lower bounds in i) and ii) the same relations hold if the projections are
replaced by sections.

Proof. The lower bound in i) and the upper bound in ii) are trivial. Let Li+d−j ∈
Ld

i+d−j . Then there exists an Li∈Ld
i with Li ⊂ Li+d−j ∩ Lj . Thus

D(K|Li+d−j) ≥ D((K|Li+d−j)|Li) = D((K|Lj)|Li) ≥ Dπ
i (K|Lj ;Lj)

and

∆(K|Li+d−j ;Li+d−j) ≤ ∆((K|Li+d−j)|Li;Li) = ∆((K|Lj)|Li;Li)

≤ ∆π
i (K|Lj ;Lj).
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This shows the upper bound in i) and the lower bound in ii).
Now, let Li ∈ Ld

i , Ld−i+1 ∈ Ld
d−i+1 with ∆d−i+1

π (K) = ∆(K|Ld−i+1;Ld−i+1)
and Dπ

i (K) = D(K|Li). For an 1-dimensional subspace L1 ⊂ Li ∩ Ld−i+1 we have

D(K|Li) ≥ D((K|Li)|L1) = ∆((K|Ld−i+1)|L1;L1) ≥ ∆(K|Ld−i+1;Ld−i+1)

and this proves iii).
The proof of the inequalities where the projections are replaced by sections can

be done in the same way. �

Now we can prove our main result

Theorem 2.1. Let K ∈ Kd. Then

1

d!
· Dπ

1 (K) · . . . · Dπ
d (K) ≤ V (K) ≤ ∆1

π(K) · . . . · ∆d
π(K), (2.1)

1

d!
· Dσ

1 (K) · . . . · Dσ
d (K) ≤ V (K) ≤ ∆1

σ(K) · . . . · ∆d
σ(K). (2.2)

In general these bounds cannot be improved.

Proof. On account of Dσ
i (K) ≤ Dπ

i (K), ∆i
σ(K) ≤ ∆i

π(K), 1 ≤ i ≤ d, it suffices to
prove the upper bound in (2.2) and the lower bound in (2.1). This will be done by
induction with respect to the dimension. Obviously, for d = 1 all inequalities hold.
So, let d ≥ 2.

We start with the upper bound. By definition of the width there exist a (d− 1)-
dimensional linear subspace Ld−1 and an unit vector x ∈ L⊥

d−1, µ ∈ R, with

V (K) =

∫ ∆(K)/2

−∆(K)/2

V (K ∩ (tx + µx + Ld−1); tx + µx + Ld−1)dt.

After a suitable translation of K we may assume

V (K) ≤ ∆(K) · V (K ∩ Ld−1;Ld−1). (2.3)

By the induction hypothesis we have

V (K) ≤ ∆(K) · ∆1
σ(K ∩ Ld−1;Ld−1) · . . . · ∆d−1

σ (K ∩ Ld−1;Ld−1),

and from Lemma 2.1. follows the upper bound in (2.2).
Next we show the lower bound. For that purpose let x, y ∈ K be two points with

‖x− y‖ = D(K), where ‖ · ‖ denotes the euclidean norm. By a suitable translation
of K we may assume y = −x. Let Ld−1 be the hyperplane with normal vector x.
Steiner-symmetrization ([BoF], pp. 69) of K with respect to Ld−1 yields a convex
body K with x,−x ∈ K, V (K) = V (K) and K ∩ Ld−1 = K|Ld−1. Hence

V (K) ≥ V (conv{(K ∩ Ld−1), x,−x}) =
D(K)

d
· V (K ∩ Ld−1;Ld−1),

where conv{·} denotes the convex hull. Thereby we have

V (K) ≥ D(K)

d
· V (K|Ld−1;Ld−1). (2.4)



ESTIMATING SIZES OF A CONVEX BODY 5

On account of Lemma 2.1. the lower bound in (2.1) follows from the induction
hypothesis.

To show that the bounds in general are best possible it suffices to consider the
upper bound of (2.1) and the lower bound of (2.2). For µ > 0 let Q(µ) be the
rectangular parallelepipedon with edge lenghts µ, µ2, . . . , µd. Obviously, Dπ

i (Q(µ))
is not greater than the diameter of a rectangular parallelepipedon with edge lenghts

µ, µ2, . . . , µi. Hence by Lemma 2.1. ∆d−i+1
π (Q(µ)) ≤ Dπ

i (Q(µ)) ≤ (
∑i

j=1 µ2j)1/2.
It follows

V (Q(µ))

∆1
π(Q(µ)) · . . . · ∆d

π(Q(µ))
≥ µµ2 · . . . · µd

µ(
∑2

j=1 µ2j)1/2 · . . . · (∑d
j=1 µ2j)1/2

.

For µ → ∞ the right hand side tends to 1 and this means that the upper bound in
(2.1) is in general best possible.

Now, let ej denote the j-th canonical unit vector and for µ > 0 let C(µ) be
the cross polytope with vertices ±µjej , 1 ≤ j ≤ d. By Lemma 2.1. we have
Dσ

i (C(µ)) ≥ ∆d−i+1
σ (C(µ)) and obviously ∆d−i+1

σ (C(µ)) is not less than the width
of a cross polytope with vertices ±µjej , i ≤ j ≤ d. Hence we have Dσ

i (C(µ)) ≥
2(

∑d
j=i µ−2j)−1/2. It follows

V (C(µ))

Dσ
1 (C(µ)) · . . . · Dσ

d (C(µ))
≤ 1

d!
· µµ2 · . . . · µd

√

√

√

√

d
∑

j=1

µ−2j

√

√

√

√

d
∑

j=2

µ−2j · . . . · µ−d.

For µ → ∞ the right hand side tends to 1/d! and this means that the lower bound
in (2.2) is in general best possible. �

For the successive radii we can deduce from the above theorem the relations

Corollary 2.1. Let K ∈ Kd. Then

(
∏d

i=1 ji) · Rπ
1 (K) · . . . · Rπ

d (K) ≤V (K) ≤ 2d · Rπ
1 (K) · . . . · Rπ

d (K), (2.5)

(
∏d

i=1 ji) · Rσ
1 (K) · . . . · Rσ

d (K) ≤V (K) ≤ 2d · Rσ
1 (K) · . . . · Rσ

d (K), (2.6)

(2d/d!) · r1
π(K) · . . . · rd

π(K) ≤V (K) ≤ (
∏d

i=1 si) · r1
π(K) · . . . · rd

π(K), (2.7)

(2d/d!) · r1
σ(K) · . . . · rd

σ(K) ≤V (K) ≤ (
∏d

i=1 si) · r1
σ(K) · . . . · rd

σ(K), (2.8)

where ji and si are the constants from (1.1), (1.2). In general the upper bounds of
(2.5), (2.6) and the lower bounds in (2.7), (2.8) cannot be improved.

Proof. The upper bounds in (2.5), (2.6) and the lower bounds in (2.7), (2.8) follow
from Theorem 2.1. and Lemma 2.1. The extremal bodies in Theorem 2.1. show also
that these bounds are best possible. The proof of the lower bounds of (2.5), (2.6)
and the upper bounds in (2.7), (2.8) can be done in the same way as in Theorem 2.1.
We only have to use the theorems of Jung (1.1) and Steinhagen (1.2) to estimate
the the diameter by the circumradius in (2.4) and the width by the inradius in
(2.3). �

Remarks.

(1) For d = 2 the lower bounds in (2.5) and (2.6) are best possible as a regular
triangle shows.
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(2) If K is a 0-symmetric convex body then we have R(K) = D(K)/2 and
r(K) = ∆(K)/2. This means that we can replace in the above Corollary
∏d

i=1 ji by 2d/d! and
∏d

i=1 si by 2d. In this case all inequalities are best
possible.

For the successive radii of Definition 1.3. we have the following general result

Theorem 2.2. Let K ∈ Kd. Then

κd · rπ
1 (K) · . . . · rπ

d (K) ≤ V (K) ≤ κd · Rπ
1 (K) · . . . · Rπ

d (K), (2.9)

κd · rσ
1 (K) · . . . · rσ

d (K) ≤ V (K) ≤ κd · Rσ
1 (K) · . . . · Rσ

d (K), (2.10)

and for K ∈ Kd with nonempty interior equality holds iff K is a ball.

Proof. Obviously, if K is a ball all inequalities are satiesfied with equality. The
upper bounds are trivial as ([BoF], p. 76)

V (K) ≤ κd(D(K)/2)d (2.11)

and Rπ
i (K) ≥ Rσ

i (K) ≥ Rσ
1 (K) = D(K)/2, 1 ≤ i ≤ d. Now, if equality holds

in one of the upper bounds we must have, on account of the foregoing relations,
Rπ

i (K) = D(K)/2 or Rσ
i (K) = D(K)/2 for 1 ≤ i ≤ d, and so V (K) = κd(R(K))d.

Since rπ
i (K) ≥ rσ

i (K), 1 ≤ i ≤ d, it suffices to prove the lower bound in (2.9).
This will be done by induction with respect to the dimension. For d = 1 there is
nothing to prove, so let d ≥ 2. For the surface area F (K) of K we have ([BoF],
p. 48)

κd−1F (K) =

∫

Sd−1

V (K|Hu;Hu)du,

where Sd−1 denotes the boundary of the d-dimensional unit ball and Hu denotes the
hyperplane with normal vector u. By definition we have rπ

i (K|Hu;Hu) ≥ rπ
i (K),

1 ≤ i ≤ d − 1, and so

κd−1F (K) ≥ dκdκd−1r
π
1 (K) · . . . · rπ

d−1(K).

On account of the trival relation dV (K) ≥ r(K)F (K) ([BoF], p. 38) we get the
lower bound in (2.9).

Now suppose equality holds in the lower bound in (2.10). Then equality holds
also in the lower bound in (2.9). By the previous proof we must have dV (K) =
r(K)F (K), rπ

i (K|Hu;Hu) = rπ
i (K) and V (K|Hu;Hu) = κd−1r

π
1 (K|Hu;Hu) · . . . ·

rπ
d−1(K|Hu;Hu) for all u ∈ Sd−1. By a simple inductive argument we can deduce

that every projection of K onto a hyperplane is a (d−1)-dimensional ball with radius
∆(K)/2. Hence K is a body of constant width and from dV (K) = r(K)F (K) it
follows that K is ball. �

Remarks.

(1) In general there is no lower (upper) bound for the volume with respect
to the product of the radii Rπ

i (K) or Rσ
i (K) (ri

π(K) or ri
σ(K)) since the

volume of a convex body may be arbitrary small (large) in proportion to
the diameter (width).

(2) The obvious counterpart of (2.11) would be V (K) ≥ κd(∆(K))d which
is trivially wrong. Thus the lower bounds in Theorem 2.2. are natural
counterparts of (2.11).
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3. Intrinsic volumes, successive diameters and successive widths

The results of the previous section can be used to obtain analogous inequalities
for the intrinsic volumes, though it turns out, that most results will probably not
be best possible. The intrinsic volumes, introduced by McMullen [M], are normal-
ized quermassintegrals and may be defined by the so-called Cauchy formula ([H],
pp. 228, [MS])

Vi(K) = cid

∫

V (K|Li;Li)dLi, 0 ≤ i ≤ d, (3.1)

where the integration is with respect to the rotation group SOd and dLi denotes
the rotation density of the i-dimensional linear subspace Li. Further the constant
cid has to be chosen, such that for i-dimensional convex bodies Vi(K) is just the
i-dimensional volume of K.

Another way to introduce the Vi is by the concept of mixed volumes (cf. again
[MS]): The volume of the linear combination λK + µM , λ, µ ≥ 0, of two convex
sets K,M ⊂ Ed can be expressed in terms of the mixed volumes V (K, i,M, d − i),
0 ≤ i ≤ d, as a polynomial in λ and µ:

V (λK + µM) =
d

∑

i=0

(

d

i

)

λiµd−iV (K, i,M, d − i).

If the second body is a ball B the mixed volumes are, up to a factor, the intrinsic

volumes V (K, i,B, d − i) =
(

d
i

)−1
κd−iVi(K).

Taking account of the definition of the intrinsic volumes we only consider succes-
sive diameters or widths, which are defined via projections. To do this the following
lemma will be useful

Lemma 3.1. (Cavalieri’s principle for intrinsic volumes). Let K ∈ Kd and
Ld−1 be a hyperplane with unit normal vector x. Then for 1 ≤ i ≤ d

Vi(K) ≥
∫ ∞

−∞
Vi−1(K ∩ (tx + Ld−1))dt.

Proof. The proof of the lemma follows immediately from a formula of Schneider

[S] which yields in our special case:

∫ ∞

−∞
Vi−1(K ∩ (tx + Ld−1))dt =

(

d
i

)

κd−i
V (K, i,B, d − i),

where B denotes the ball of dimension (d − 1) in the hyperplane Ld−1. From this
the assertion follows from the monotony of the mixed volumes (cf. [MS]). �

By this lemma we get

Theorem 3.1. Let K ∈ Kd. Then for 1 ≤ i ≤ d

1

i!
· Dπ

d (K) · . . . · Dπ
d−i+1(K) ≤ Vi(K) ≤ κid

cid
· ∆1

π(K) · . . . · ∆i
π(K),

with κid =
∫

dLi. Here the constant on the left hand side is best possible.
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Proof. We start with the proof of the upper bound. For any i-dimensional plane
Li ∈ Ld

i we have by 2.1. V (K|Li;Li) ≤ ∆1
π(K|Li;Li)·. . .·∆i

π(K|Li;Li). By Lemma
2.1. and (3.1) the assertion follows.

We prove the lower bound by induction with respect to the dimension. For d = 1
the assertion is clear. For K ⊂ Ed we choose x, y ∈ K, such that ‖x− y‖ = D(K).
Now let K be the body obtained by Steiner-symmetrization of K with respect to
the hyperplane Ld−1 orthogonal to u = x−y/‖x−y‖. Then we have Vi(K) ≥ Vi(K)
and K ∩ Ld−1 = K|Ld−1 ([BoF], pp. 69). Hence by Lemma 3.1. and Lemma 2.1.

Vi(K) ≥ Vi(K) ≥
∫ ∞

−∞
Vi−1(K ∩ (tu + Ld−1))

≥
∫ D(K)/2

−D(K)/2

(D(K)/2 − |t|)i−1

(D(K)/2)i−1
Vi−1(K ∩ Ld−1)dt =

D(K)

i
· Vi−1(K|Ld−1)

≥ 1

i!
· D(K) · Dπ

d−1(K|Ld−1;Ld−1) · . . . · Dπ
d−i+1(K|Ld−1;Ld−1)

≥ 1

i!
· Dπ

d (K) · . . . · Dπ
d−i+1(K).

For 1 ≤ i ≤ d the i-dimensional crosspolytopes considered in the proof of Theorem
2.1. show that the lower bound cannot be improved. �

From Theorem 3.1. we may immediately deduce the following corollary which is
needed in the next section and shows again the analogy of iterated diameters and
successive minima (compare [He3])

Corollary 3.1. Let K ∈ Kd. Then for 0 ≤ i ≤ d

cid

κidd!
· Dπ

1 (K) · . . . · Dπ
d−i(K) · Vi(K) ≤ V (K) ≤ i! · ∆i+1

π (K) · . . . · ∆d
π(K) · Vi(K).

Proof. From Theorem 1.1. and Lemma 2.1. we have

V (K) ≥ 1

d!
Dπ

1 (K) · . . . · Dπ
d−i(K) · ∆1

π(K) · . . . · ∆i
π(K).

Together with the upper bound in Theorem 3.1. this shows the lower bound. The
proof of the upper bound can be done in the same way. �

4. Applications to the lattice point enumerator

In this part of the paper we show some inequalities, which relate volume, lat-
tice number and successive widths. Therefore let Z

d denote the set of all points
with integral coordinates in Ed and for a convex body K ∈ Kd the lattice point
enumerator card(K ∩ Z

d) is denoted by G(K).
Bokowski, Hadwiger and Wills [BokHW] proved the following asymptoti-

cally tight inequality

G(K) > V (K) − Vd−1(K). (4.1)
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By Vd−1(K) = F (K)/2 ≤ dV (K)/(2r(K)) we get from (4.1)

G(K) ≥
(

1 − d

2

1

r(K)

)

V (K), (4.2)

where the factor d/2 is best possible as a series of open lattice cubes — all vertices
are lattice points — shows. Here it seems to be an interesting question, what
happens if r(K) is replaced by ∆(K).

On the other hand we have G(K) ≤ V (K + Cd), where Cd denotes the d-
dimensional cube with edge length 1. This volume can be estimated in terms of
the intrinsic volumes ([BW]) and we get

G(K) ≤
d

∑

i=0

κd−i(

√
d

2
)d−iVi(K).

By Theorem 3.1 we have an upper bound of Vi(K) in terms of the volume and
certain successive diameters and hence we get an inequality of the form

G(K) ≤
d

∏

i=1

(

1 +
cid

Dπ
i (K)

)

V (K), (4.3)

where cid are constants only depending on i and d. To get good constants seems to
be a nontrivial problem. For a similar result see Wills [W] who proved G(K) ≤
(1 +

√
d

2r(K) )
dV (K).

Altogether it seems to be an interesting open problem to get upper and lower
bounds of the quotient G(K)/V (K) in terms of the successive diameters, widths
and radii.
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